5 (a) Express $\tan 2\alpha$ in terms of $\tan \alpha$ and hence solve, for $0^{\circ} < \alpha < 180^{\circ}$, the equation

$$\tan 2\alpha \tan \alpha = 8.$$
 [6]

(b) Given that β is the acute angle such that $\sin \beta = \frac{6}{7}$, find the exact value of

(i)
$$\csc \beta$$
, [1]

(ii)
$$\cot^2 \beta$$
. [2]

8 The expression $T(\theta)$ is defined for θ in degrees by

$$T(\theta) = 3\cos(\theta - 60^{\circ}) + 2\cos(\theta + 60^{\circ}).$$

- (i) Express $T(\theta)$ in the form $A \sin \theta + B \cos \theta$, giving the exact values of the constants A and B. [3]
- (ii) Hence express $T(\theta)$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [3]
- (iii) Find the smallest positive value of θ such that $T(\theta) + 1 = 0$. [4]

1

Each diagram above shows part of a curve, the equation of which is one of the following:

$$y = \sin^{-1} x$$
, $y = \cos^{-1} x$, $y = \tan^{-1} x$, $y = \sec x$, $y = \csc x$, $y = \cot x$.

State which equation corresponds to

3 The angles α and β are such that

$$\tan \alpha = m + 2$$
 and $\tan \beta = m$,

where m is a constant.

- (i) Given that $\sec^2 \alpha \sec^2 \beta = 16$, find the value of m. [3]
- (ii) Hence find the exact value of $tan(\alpha + \beta)$. [3]

7	7	(i)	Express $8 \sin \theta - 6 \cos \theta$ in the form $R \sin(\theta - \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$.	[3]	
		(ii)	Hence		
			(a) solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation $8 \sin \theta - 6 \cos \theta = 9$,	[4]	
			(b) find the greatest possible value of		
	$32\sin x - 24\cos x - (16\sin y - 12\cos y)$				
			as the angles x and y vary.	[3]	
2	2	The	angle θ is such that $0^{\circ} < \theta < 90^{\circ}$.	010	
		(i)	Given that θ satisfies the equation $6 \sin 2\theta = 5 \cos \theta$, find the exact value of $\sin \theta$.	[3]	
		(ii)	Given instead that θ satisfies the equation $8\cos\theta\csc^2\theta = 3$, find the exact value of $\cos\theta$.	[5]	
9	,	The	value of $\tan 10^{\circ}$ is denoted by p. Find, in terms of p, the value of		
		(i)	tan 55°,	[3]	
		(ii)	tan 5°,	[4]	
	*	(iii)	$\tan \theta$, where θ satisfies the equation $3\sin(\theta + 10^{\circ}) = 7\cos(\theta - 10^{\circ})$.	[5]	
			June 20	010	
3	1	(i)	Express the equation $\csc \theta (3\cos 2\theta + 7) + 11 = 0$ in the form $a\sin^2 \theta + b\sin \theta + c = 0$, where a, b and c are constants.	here [3]	
		(ii)	Hence solve, for $-180^{\circ} < \theta < 180^{\circ}$, the equation $\csc \theta (3\cos 2\theta + 7) + 11 = 0$.	[3]	
8	3	(i)	Express $3\cos x + 3\sin x$ in the form $R\cos(x - \alpha)$, where $R > 0$ and $0 < \alpha < \frac{1}{2}\pi$.	[3]	
		(ii)	The expression T(x) is defined by T(x) = $\frac{8}{3\cos x + 3\sin x}$.		
			(a) Determine a value of x for which $T(x)$ is not defined.	[2]	
			(b) Find the smallest positive value of x satisfying $T(3x) = \frac{8}{9}\sqrt{6}$, giving your answer in an e form.	xact [4]	

JUNE 2007

- 7 (i) Sketch the graph of $y = \sec x$ for $0 \le x \le 2\pi$. [2]
 - (ii) Solve the equation $\sec x = 3$ for $0 \le x \le 2\pi$, giving the roots correct to 3 significant figures. [3]
 - (iii) Solve the equation $\sec \theta = 5 \csc \theta$ for $0 \le \theta \le 2\pi$, giving the roots correct to 3 significant figures. [4]
- 9 (i) Prove the identity

$$\tan(\theta + 60^{\circ})\tan(\theta - 60^{\circ}) \equiv \frac{\tan^2 \theta - 3}{1 - 3\tan^2 \theta}.$$
 [4]

(ii) Solve, for $0^{\circ} < \theta < 180^{\circ}$, the equation

$$\tan(\theta + 60^{\circ})\tan(\theta - 60^{\circ}) = 4\sec^2\theta - 3,$$

giving your answers correct to the nearest 0.1°.

.

 \star (iii) Show that, for all values of the constant k, the equation

$$\tan(\theta + 60^{\circ})\tan(\theta - 60^{\circ}) = k^{2}$$

has two roots in the interval $0^{\circ} < \theta < 180^{\circ}$.

JANUARY 2008

[5]

[3]

- 3 (a) Solve, for $0^{\circ} < \alpha < 180^{\circ}$, the equation $\sec \frac{1}{2}\alpha = 4$. [3]
 - **(b)** Solve, for $0^{\circ} < \beta < 180^{\circ}$, the equation $\tan \beta = 7 \cot \beta$. [4]
- 9 (i) Use the identity for cos(A + B) to prove that

$$4\cos(\theta + 60^{\circ})\cos(\theta + 30^{\circ}) \equiv \sqrt{3} - 2\sin 2\theta.$$
 [4]

- (ii) Hence find the exact value of $4\cos 82.5^{\circ}\cos 52.5^{\circ}$. [2]
- (iii) Solve, for $0^{\circ} < \theta < 90^{\circ}$, the equation $4\cos(\theta + 60^{\circ})\cos(\theta + 30^{\circ}) = 1$. [3]
- (iv) Given that there are no values of θ which satisfy the equation

$$4\cos(\theta + 60^{\circ})\cos(\theta + 30^{\circ}) = k,$$

determine the set of values of the constant k. [3]