Jan 13

3 (a) Given that
$$|t| = 3$$
, find the possible values of $|2t - 1|$. [3]

(b) Solve the inequality
$$|x - \sqrt{2}| > |x + 3\sqrt{2}|$$
. [4]

8 The functions f and g are defined for all real values of x by

$$f(x) = x^2 + 4ax + a^2$$
 and $g(x) = 4x - 2a$,

where a is a positive constant.

(ii) Given that
$$fg(3) = 69$$
, find the value of a and hence find the value of x such that $g^{-1}(x) = x$. [6]

Jun 12

1 Solve the inequality
$$|2x-5| > |x+1|$$
. [5]

7 The function f is defined for all real values of x by f(x) = 2x + 5. The function g is defined for all real values of x and is such that $g^{-1}(x) = \sqrt[3]{x-a}$, where a is a constant. It is given that $fg^{-1}(12) = 9$. Find the value of a and hence solve the equation gf(x) = 68.

Jan 12

5

It is given that f is a one-one function defined for all real values. The diagram shows the curve with equation y = f(x). The coordinates of certain points on the curve are shown in the following table.

x	2	4	6	8	10	12	14
y	1	8	14	19	23	25	26

(i) State the value of ff(6) and the value of $f^{-1}(8)$.

(ii) On the copy of the diagram, sketch the curve $y = f^{-1}(x)$, indicating how the curves y = f(x) and $y = f^{-1}(x)$ are related.

[2]

9

The function f is defined for all real values of x by

$$f(x) = k(x^2 + 4x),$$

where *k* is a positive constant. The diagram shows the curve with equation y = f(x).

(i) The curve $y = x^2$ can be transformed to the curve y = f(x) by the following sequence of transformations: a translation parallel to the x-axis, a translation parallel to the y-axis, a stretch.

Give details, in terms of k where appropriate, of these transformations.

- (ii) Find the range of f in terms of k. [2]
- (iii) It is given that there are three distinct values of x which satisfy the equation |f(x)| = 20. Find the value of k and determine exactly the three values of x which satisfy the equation in this case.

June 11

7 The functions f, g and h are defined for all real values of x by

$$f(x) = |x|,$$
 $g(x) = 3x + 5$ and $h(x) = gg(x).$

(i) Solve the equation g(x+2) = f(-12). [3]

(ii) Find
$$h^{-1}(x)$$
. [3]

(iii) Determine the values of x for which

$$x + f(x) = 0. ag{2}$$

[5]

Jan 2011

1 Solve the equation |3x + 4a| = 5a, where a is a positive constant. [3]

June 2010

- 5 (i) Solve the inequality $|2x+1| \le |x-3|$. [5]
 - (ii) Given that x satisfies the inequality $|2x+1| \le |x-3|$, find the greatest possible value of |x+2|.
- **9** The functions f and g are defined for all real values of x by

$$f(x) = 4x^2 - 12x$$
 and $g(x) = ax + b$,

where a and b are non-zero constants.

- (i) Find the range of f. [3]
- (ii) Explain why the function f has no inverse. [2]
- (iii) Given that $g^{-1}(x) = g(x)$ for all values of x, show that a = -1. [4]
- (iv) Given further that gf(x) < 5 for all values of x, find the set of possible values of b. [4]

Jan 2010

4

The function f is defined for all real values of x by

$$f(x) = 2 - \sqrt[3]{x+1}$$
.

The diagram shows the graph of y = f(x).

(i) Evaluate
$$ff(-126)$$
.

- (ii) Find the set of values of x for which f(x) = |f(x)|. [2]
- (iii) Find an expression for $f^{-1}(x)$. [3]
- (iv) State how the graphs of y = f(x) and $y = f^{-1}(x)$ are related geometrically. [1]

Q	uestio	on	Answer	Marks	Guidance
3	(a)		Substitute $t = 3$ in $ 2t - 1 $ and obtain value 5	B1	not awarded for final 5 nor for ±5
			Substitute $t = -3$ in $ 2t - 1 $ and apply modulus correctly to any negative value to obtain a positive value	M1	with no modulus signs remaining
			Obtain value 7 as final answer	A1	not awarded for final 7 nor for ±7
					NB: substitutions in $ 2t+1 $ will give 5 and 7 – this is 0/3, not MR; a further step to $5 < t < 7 - B1 M1 A0$; answers $\pm 5, \pm 7$ – this is B0 M0 A0
		+		[3]	
3	(b)		Either Attempt solution of linear equation or inequality with signs of x different Obtain critical value $-\sqrt{2}$	M1 A1	or equiv (exact or decimal approximation)
			Or 1 Attempt to square both sides Obtain $x^2 - 2\sqrt{2}x + 2 > x^2 + 6\sqrt{2}x + 18$	M1 A1	obtaining at least 3 terms on each side or equiv; or equation; condone > here
			Or 2 Attempt sketches of $y = x - \sqrt{2} $, $y = x + 3\sqrt{2} $ Obtain $x = -\sqrt{2}$ at point of intersection	M1 A1	or equiv
		1	Conclude with inequality of one of the following types:		
			$x < k\sqrt{2}$, $x > k\sqrt{2}$, $x < \frac{k}{\sqrt{2}}$, $x > \frac{k}{\sqrt{2}}$ Obtain $x < -\sqrt{2}$ or $-\sqrt{2} > x$ as final answer	M1 A1	any integer k final answer $x < -\frac{2}{\sqrt{2}}$ (or similar unsimplified version) is A0
				[4]	
8	(i)		Attempt completion of square at least as far as $(x+2a)^2$ or differentiation to find stationary point at least as far as linear equation involving two terms Obtain $(x+2a)^2 - 3a^2$ or $(-2a, -3a^2)$	*M1	or equiv but a must be present
			Attempt inequality involving appropriate y-value State $y \ge -3a^2$ or $f(x) \ge -3a^2$	M1 A1 [4]	dep *M; allow <, > or \leq here; allow use of x; or unsimplified equiv now with \geq ; here $x \geq -3a^2$ is A0

9

4723 Mark Scheme January 2013

Question		on	Answer		Guidance		
8	(ii)		Attempt composition of f and g the right way round	*M1	algebraic or (part) numerical; need to see $4x - 2a$ replacing x at least		
					once		
			Obtain or imply $16x^2 - 3a^2$ or $144 - 3a^2$	A1	or less simplified equiv but with at least the brackets expanded correctly		
			Attempt to find a from $fg(3) = 69$	M1	dep *M		
			Obtain at least $a = 5$	A1			
			Attempt to solve $4x-10=x$ or $\frac{1}{4}(x+10)=x$ or				
			$4x - 10 = \frac{1}{4}(x + 10)$	M1	for their a; must be linear equation in one variable; condone sign slip ir finding inverse of g		
			Obtain $\frac{10}{3}$	A1	and no other answer		
				[6]			

Obtain $\frac{4}{3}$ Obtain 6 Attempt process for inequality involving two critical values Obtain $x < \frac{4}{3}$, $x > 6$ Show composition of functions Obtain $a = 4$ EITHER Attempt to find $a = 2$ Attempt to find $a = 2$ Obtain $a = 4$ EITHER Attempt to find $a = 2$ EITHER Attempt to find $a = 2$ Obtain $a = 4$ EITHER Attempt to find $a = 2$ EITHER Attempt to find $a = 2$ Attempt solution of equation Obtain $a = 2$ EITHER Attempt to find $a = 2$ EITHER Attempt to find $a = 2$ EITHER Attempt to find $a = 2$ EITHER Attempt solution of equation Obtain $a = 2$ EITH		Answer	Marks	Guidance	
Obtain 6 Attempt process for inequality involving two critical values Obtain $x < \frac{4}{3}$, $x > 6$ Show composition of functions Obtain $2\sqrt[3]{12-a} + 5 = 9$ Obtain $a = 4$ EITHER Attempt to find $g(x)$ Obtain $(2x + 5)^3 + 4 = 68$ Attempt solution of equation Obtain $-\frac{1}{2}$ A1 A1 A2 for use of \le and/or \ge A1 A3 for use of \le and/or \ge A1 A4 for use of \le and/or \ge A1 A5 for use of \le and/or \ge A1 A6 for use of \le and/or \ge A1 A1 A2 A3 A4 A4 BEITHER Attempt to find $g(x)$ Obtain $g(x)$ Obtain $g(x)$ A1 A1 A1 A1 A1 A1 A2 A1 A2 A3 A4 A4 A4 A4 A4 A5 A6 A6 A6 A7 A7 A7 A7 A7 A7 A8 A7 A8 A7 A8 A7 A8 A7 A8 A7 A8				squaring both sides, 2 linear eqns, ineqs,	If using quadratic, need to go as far as factorising or substituting in formula for M1; if using two linear eqns or ineqs, signs of 2x and x must be same in one, different in the other for M1
Obtain $x < \frac{4}{3}$, $x > 6$ Show composition of functions Obtain $2\sqrt[3]{12-a} + 5 = 9$ Obtain $a = 4$ EITHER Attempt to find $g(x)$ Obtain $(2x + 5)^3 + 4 = 68$ Attempt solution of equation Obtain $-\frac{1}{2}$ Obtain $-\frac{1}{2}$ OBain $-\frac{1}{2}$ Attempt solution of equation of form Althorized A0 for use of \le and/or \ge In the right way round; or equivor equiv		Obtain 6 Attempt process for inequality involving	A1	sketch, table,; implied by plausible soln	
Show composition of functions Obtain $2\sqrt[3]{12-a} + 5 = 9$ Obtain $a = 4$ EITHER Attempt to find $g(x)$ Obtain $(2x + 5)^3 + 4 = 68$ Attempt solution of equation Obtain $-\frac{1}{2}$ OR State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form MI At reight way round; or equiv or equiv or equiv or equiv *MI Obtaining $px^3 + q$ or $py^3 + q$ form following their value of a dep *M; earned at stage $2x + 5 =$; if expanding to produce cubic equation, earned attempt at linear and quadratic factors and no others; dependent on correct work throughout [7] OR State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form				A0 for use of \leq and/or \geq	
Obtain $2\sqrt[3]{12-a} + 5 = 9$ Obtain $a = 4$ EITHER Attempt to find $g(x)$ Obtain $(2x + 5)^3 + 4 = 68$ Attempt solution of equation Obtain $-\frac{1}{2}$ Obtain $-\frac{1}{2}$ Obtain $-\frac{1}{2}$ OState or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form A1 Obtain $g(x)$ A1 Obtaining $g(x)$ A1 Obtai		G1 27 66 7		4 114 1	
Obtain $a = 4$ EITHER Attempt to find $g(x)$ Obtain $(2x+5)^3 + 4 = 68$ Attempt solution of equation Obtain $-\frac{1}{2}$ Obtain $-\frac{1}{2}$ OBR State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form A1 A1 *M1 obtaining $px^3 + q$ or $py^3 + q$ form following their value of a dep *M; earned at stage $2x + 5 =$; if expanding to produce cubic equation, earner attempt at linear and quadratic factors and no others; dependent on correct work throughout B2 A1 B2 A1 A1 B2 A1 A1 B2 A1 A1 A1 A1 A1 A1 A1 A1 A1 A					
EITHER Attempt to find $g(x)$ Obtain $(2x+5)^3 + 4 = 68$ Attempt solution of equation Obtain $-\frac{1}{2}$ Obtain $-\frac{1}{2}$ State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form *M1 obtaining $px^3 + q$ or $py^3 + q$ form following their value of a dep *M; earned at stage $2x + 5 =$; if expanding to produce cubic equation, earner attempt at linear and quadratic factors and no others; dependent on correct work throughout B2 Attempt solution of equation of form M1				o. equit	
Obtain $(2x+5)^3+4=68$ Attempt solution of equation Obtain $-\frac{1}{2}$ Otal of equation OB State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form A1 A1ft following their value of a dep *M; earned at stage $2x+5=$; if expanding to produce cubic equation, earned attempt at linear and quadratic factors and no others; dependent on correct work throughout B2 Attempt solution of equation of form A1 B2 Attempt solution of equation of form			Ai		
Obtain $(2x+5)^3 + 4 = 68$ Attempt solution of equation Obtain $-\frac{1}{2}$ Obtain $-\frac{1}{2}$ Alf OR State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form Alf Including their value of a dep *M; earned at stage $2x+5 =$; if expanding to produce cubic equation, earner attempt at linear and quadratic factors and no others; dependent on correct work throughout B2 Attempt solution of equation of form Alf Including their value of a dep *M; earned at stage $2x+5 =$; if expanding to produce cubic equation, earner attempt at linear and quadratic factors and no others; dependent on correct work throughout			*M1	obtaining $px^3 + q$ or $py^3 + q$ form	
Attempt solution of equation Obtain $-\frac{1}{2}$ OB State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation M1 dep *M; earned at stage $2x + 5 =$; if expanding to produce cubic equation, earner attempt at linear and quadratic factors and no others; dependent on correct work throughout B2 Attempt solution of equation of form M1 dep *M; earned at stage $2x + 5 =$; if expanding to produce cubic equation, earner attempt at linear and quadratic factors and no others; dependent on correct work throughout		Obtain $(2x+5)^3 + 4 = 68$	A1ft		
Obtain $-\frac{1}{2}$ Obtain $-\frac{1}{2}$ A1 I7 OR State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form A1 attempt at linear and quadratic factors and no others; dependent on correct work throughout B2 Attempt at linear and quadratic factors and no others; dependent on correct work throughout			M1	dep *M; earned at stage $2x + 5 =$; if expanding to pr	oduce cubic equation, earned with
OR State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form B2 M1					
OR State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form B2 M1		Obtain $-\frac{1}{2}$	A1	and no others; dependent on correct work throughout	
State or imply $f(x) = g^{-1}(68)$ Attempt solution of equation of form B2 M1		0.0	[7]		
Attempt solution of equation of form $M1$			B2		
2x+5=3/68-4		$2x+5=\sqrt[3]{68-4}$	IVII		
Obtain $-\frac{1}{2}$ A1		-	A1		
		1			
5 (i) State 26 B1	5 (0)	State 26	BI		
State 4 B1					
			[2]		
Sketch (more or less) correct curve B1 with approx correct curvatures and curve going through second quadrant but not fourth quadrant; allow if sketch does not meet given curve on line $y = x$ Refer to reflection in $y = x$ or symmetrical B1 with approx correct curvatures and curve going through second quadrant but not fourth quadrant; allow if sketch does not meet given curve on line $y = x$	5 (ii)			through second quadrant but not fourth quadrant; allow if sketch does not meet given curve on line $y = x$	
			B1	shown on sketch	
about $v = x$ or mirrored in $v = x$ shown on sketch		access y were immerced in y w	[2]	Shown on shotel	
			1		
[2]	Question	Answer	Mark	S Guidance	
	9 (i)	Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x+)^2$	M1	or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1	
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); x = -2 only		Obtain $x = -2$ or $(x+2)^2$	A1	first two marks of part (i) are implied by correct answer to translation in x-direction	
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by		State translation by 2 in negative x-direction	A1	or (clear) equiv; allow correct vector	
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector					
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector		Same success parametric by-axis, searc factor k	[5]	or equivat reast mentioning y and h	
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k			+		
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k	-	State one of $y < 4k, y \le 4k, y < -4k, y \le -4k$ $y > 4k, y \ge 4k, y > -4k, y \ge -4k$	В1		
Question Answer Marks Guidance M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); x = -2 only stated earns M1A1 Obtain x = -2 or (x+2)² State translation by 2 in negative x-direction State translation by 4 in negative y-direction State stretch parallel to y-axis, scale factor k (ii) Attempt differentiation to find x-coordinate of stationary point or attempt completion or equiv; first two marks of part (i) may be earned by work seen in part (ii); x = -2 only stated earns M1A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k (5) State one of B1 State one of	9 (ii)	State $y \ge -4k$	B1	allow alternative notation such as $f(x) \ge -4k$	
QuestionAnswerMarksGuidance9(i)Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1Obtain $x = -2$ or $(x + 2)^2$ A1first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv; allow correct vector or equiv at least mentioning y and k9(ii)State one of $y < 4k, y \le 4k, y < -4k, y \le -4k$ $y > 4k, y \ge 4k, y > -4k, y \ge -4k$ B1	9 (ii)			or range $\geq -4k$	
QuestionAnswerMarksGuidance9(i)Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1Obtain $x = -2$ or $(x + 2)^2$ A1first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k9(ii)State one of $y < 4k, y \le 4k, y < -4k, y \le -4k$ $y > 4k, y \ge -4k$ State $y \ge -4k$ B1allow alternative notation such as $f(x) \ge -4k$ or range $y \ge -4k$	9 (ii)	1	[2]		
QuestionAnswerMarksGuidance9(i)Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1Obtain $x = -2$ or $(x + 2)^2$ A1first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k9(ii)State one of $y < 4k, y \le 4k, y < -4k, y \le -4k$ $y > 4k, y \ge -4k$ State $y \ge -4k$ B110State one of $y < 4k, y \le 4k, y > -4k, y \ge -4k$ State $y \ge -4k$ B110allow alternative notation such as $f(x) \ge -4k$ or range $y \ge -4k$	9 (ii)				
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k 9 (iii) State one of $y < 4k, y < 4k, y < -4k, y < -4k$ $y > 4k, y > -4k, y > -4k$, $y > -4k$,		stationary point to 20 or -20 or consider discriminant of	*M1		
QuestionAnswerMarksGuidance9(i)Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1Obtain $x = -2$ or $(x + 2)^2$ A1first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k9(ii)State one of $y < 4k, y \le 4k, y < -4k, y \le -4k$ $y > 4k, y \ge 4k, y > -4k, y \ge -4k$ B19(iii)Attempt to relate y-value involving k at their stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k($		stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$			
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ Obtain $x = -2$ or $(x + 2)^2$ A1 Girst two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 State translation by 2 in negative x-direction State translation by 4 in negative y-direction State stretch parallel to y-axis, scale factor k B1 State one of $y < 4k$, $y < 4k$, $y < -4k$, $y < -4k$ $y > 4k$, $y > -4k$ $y > 4k$, $y > -4k$ $y > 4k$, $y > -4k$ State $y \ge -4k$ B1 allow alternative notation such as $f(x) \ge -4k$ or range $y > 4k$		stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$ Obtain $k = 5$	A1		
Question Answer Marks Guidance Part Comparison		stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$ Obtain $k = 5$ State one root $x = -2$	A1 B1	working	
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k 9 (ii) State one of $y < 4k$, $y ≤ 4k$, $y < -4k$, $y ≥ -4k$ B1 y > 4k, $y ≥ 4k$, $y > 4k$, $y ≥ 4k$, $y > -4k$, $y ≥ -4k$ B1 allow alternative notation such as $f(x) ≥ -4k$ or range $≥ -4k$ 9 (iii) Attempt to relate y-value involving k at their stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = 20$ A1 9 (iii) Attempt to relate y-value involving k at their stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = 20$ A1 earned unless there is clear evidence of error in working at earned unless there is clear evidence of error in working Horizontal point of the provided positive		stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$ Obtain $k = 5$ State one root $x = -2$ Attempt solution of $k(x^2 + 4x) = 20$	A1 B1 M1	working dep *M; for their value of k provided positive	
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ Obtain $x = -2$ or $(x + 2)^2$ All first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 9 (ii) State translation by 2 in negative x-direction State stretch parallel to y-axis, scale factor k Bl f		stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$ Obtain $k = 5$ State one root $x = -2$ Attempt solution of $k(x^2 + 4x) = 20$ Obtain $\frac{-4 \pm \sqrt{32}}{2}$	A1 B1 M1 A1ft	working dep *M; for their value of k provided positive or (unsimplified) exact equivs; following their value of k	
Question Answer Marks Guidance 9 (i) Attempt differentiation to find x-coordinate of stationary point or attempt completion of square as far as $(x +)^2$ M1 or equiv; first two marks of part (i) may be earned by work seen in part (ii); $x = -2$ only stated earns M1A1 Obtain $x = -2$ or $(x + 2)^2$ A1 first two marks of part (i) are implied by correct answer to translation in x-direction or (clear) equiv; allow correct vector or (clear) equiv; allow correct vector or equiv at least mentioning y and k 9 (ii) State one of $y < 4k$, $y ≤ 4k$, $y < -4k$, $y ≥ -4k$ B1 y > 4k, $y ≥ 4k$, $y > 4k$, $y ≥ 4k$, $y > -4k$, $y ≥ -4k$ B1 allow alternative notation such as $f(x) ≥ -4k$ or range $≥ -4k$ 9 (iii) Attempt to relate y-value involving k at their stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = 20$ A1 9 (iii) Attempt to relate y-value involving k at their stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = 20$ A1 earned unless there is clear evidence of error in working at earned unless there is clear evidence of error in working Horizontal point of the provided positive		stationary point to 20 or -20 or consider discriminant of $k(x^2 + 4x) = 20$ or of $k(x^2 + 4x) = -20$ Obtain $k = 5$ State one root $x = -2$ Attempt solution of $k(x^2 + 4x) = 20$ Obtain $\frac{-4 \pm \sqrt{32}}{2}$	A1 B1 M1 A1ft	working dep *M; for their value of k provided positive or (unsimplified) exact equivs; following their value of k dependent on previous A1 A1ft marks being	

7	(i)	Either: Attempt solution of at least one linear eq'n of form $ax + b = 12$ Obtain $\frac{1}{3}$ Or: Attempt solution of 3-term quadratic eq'n obtained by squaring attempt at $g(x+2)$ on LHS and squaring 12 or -12 on RHS Obtain $\frac{1}{3}$	M1 A2 M1 A2	3		and (finally) no other answer and (finally) no other answer
	(ii)	Either: Obtain $3(3x+5)+5$ for h Attempt to find inverse function Obtain $\frac{1}{9}(x-20)$ Or: State or imply g^{-1} is $\frac{1}{3}(x-5)$ Attempt composition of g^{-1} with g^{-1} Obtain $\frac{1}{9}(x-5)-\frac{5}{3}$	B1 M1 A1 B1 M1			of function of form $ax + b$ or equiv in terms of x or more simplified equiv in terms of x
	(iii)	State $x \le 0$	В2	8	_	give B1 for answer $x < 0$
1		Either: Obtain $\frac{1}{3}a$ Attempt solution of linear eqn	B1 M1			condone $ x = \frac{1}{3}a$ with signs of $3x$ and $5a$ different; allow M1 only if a given particular value and no recovery occurs; allow M1 only if a in terms of x attempted; allow M1 only if double inequality attempted but with no recovery to state actual values of x
		Obtain $-3a$ Or: Obtain $9x^2 + 24ax + 16a^2 = 25a^2$ Attempt solution of 3-term quad eqn	A1 B1 M1	3	3	as final answer as far as substitution into correct quadratic formula or correct factorisation of their quadratic; allow M1 only if a given particular value
		Obtain $-3a$ and $\frac{1}{3}a$	A1	_	3) 3	or equivs; as final answers; and no others

9	(i)	Attempt to find x-coord of staty point or complete square Obtain $(\frac{3}{2}, -9)$ or $4(x-\frac{3}{2})^2-9$ or -9			or equiv
			$f(x) \ge -9$	A1 A1 3	using any notation; with ≥
	(ii)		one correct (perhaps general) relevant statement ade with correct evidence related to this f	B1 B1 2	not 1-1, f is many-one,; maybe implied if attempt is specific to this f AG; (more or less) correct sketch; correct relevant calculations,
	 (iii)	Either:	Attempt to find expression for g ⁻¹	*M1	or equiv
	()		Obtain $\frac{1}{a}(x-b)$	A 1	or equiv
			Compare $\frac{1}{a}(x-b)$ and $ax+b$	M1	dep *M; by equating either coefficients of a or constant terms (or both); or substituting two non-zero values of x and solving eqns for a
			Obtain at least $-\frac{b}{a} = b$ and hence $a = -1$	A1 4	AG; necessary detail required; or equiv
			[SC1: first two steps as above, then substitute $a =$ [SC2: substitute $a = -1$ at start: Attempt to find i		-
		Or:	State or imply that $y = g^{-1}(x)$ is reflection	D.I	
			of $y = g(x)$ in line $y = x$ State that line unchanged by this reflection is	B1	
			perpendicular to $y = x$	M2	
			Conclude that a is -1	A1 4	L
		State	r imply that $gf(x) = -(4x^2 - 12x) + b$	B1	
	(1V)		of use of discriminant or relate to range of f	M1	or equiv
			64+16b < 0 or $9+b < 5$	A1	or equiv
		Obtain	<i>b</i> < -4	A1 4	
4	(i	-	mpt correct process for composition in (7 and hence) 0	M1 A1	numerical or algebraic 2
	(ii	-	mpt to find x-intercept in $x \le 7$	M1 A1	2 or equiv; condone use of <
	 (iii	i) Atter	mpt correct process for finding inverse	M1	
	`	-	in $\pm (2-y)^3 - 1$ or $\pm (2-x)^3 - 1$	A1	
		Obta	in correct $(2-x)^3-1$	A1	3 or equiv in terms of x
	(iv) Refe	r to reflection in $y = x$	В1	1 or clear equiv